Стоматология
doi: 10.25005/2074-0581-2025-27-2-453-462
ОСТЕОИНДУКТИВНЫЕ И ПРОТИВОМИКРОБНЫЕ НАНОРАЗМЕРНЫЕ ПОКРЫТИЯ ДЕНТАЛЬНЫХ ИМПЛАНТАТОВ
1Кафедра пародонтологии, Тверской государственный медицинский университет, Тверь, Российская Федерация
2Кафедра стоматологии, Тверской государственный медицинский университет, Тверь, Российская Федерация
3Кафедра стоматологии общей практики Медицинского института, Белгородский государственный национальный исследовательский университет, Белгород, Российская Федерация
4Лечебный факультет, Тверской государственный медицинский университет, Тверь, Российская Федерация
В связи с увеличением общего числа устанавливаемых имплантатов, растёт и процент их утрат, вследствие воспалительных осложнений – периимплантита и периимплантного мукозита. Для повышения прогнозируемости лечения и активации биологических процессов, ответственных за интеграцию имплантата, разрабатываются дентальные имплантаты с модифицированными поверхностями. Основные векторы развития имплантологии направлены, с одной стороны, на создание технологий, обеспечивающих высокое химическое сродство биологически инертного титанового имплантата с окружающими тканями (например, создание особого микрорельефа или внедрение биологически активных сигнальных молекул: аминокислот, пептидов, нуклеотидов). С другой стороны, разрабатываются покрытия, основной целью которых становится воспрепятствование жизнедеятельности патогенных микроорганизмов и предотвращение образования микробных биоплёнок. Это достигается, в том числе, за счёт биоцидных свойств наноразмерных частиц металлов и органических соединений: хитозана и графена. В настоящем обзоре литературы использовано 67 статей на английском языке, опубликованных в период с 2018 по 2024 год, размещённых на платформах PubMed и Cochrane и посвящённых вопросам создания биологически активных дентальных имплантатов. Из них 7 представляли собой обзоры литературы и мета-анализы, 60 – оригинальные клинико-лабораторные исследования.
Ключевые слова: дентальная имплантация, нанотехнологии, биокерамика, графен, костные морфогенетические белки, генная инженерия.
Литература
- Panchal H, Shamsunder MG, Petrovic I, Rosen EB, Allen RJ Jr, Hernandez M, et al. Dental implant survival in vascularized bone flaps: A systematic review and metaanalysis. Plast Reconstr Surg. 2020;146(3):637-48. https://doi.org/10.1097/ PRS.0000000000007077
- Oh SL, Shiau HJ, Reynolds MA. Survival of dental implants at sites after implant failure: A systematic review. J Prosthet Dent. 2020;123(1):54-60. https://doi. org/10.1016/j.prosdent.2018.11.007
- French D, Grandin HM, Ofec R. Retrospective cohort study of 4,591 dental implants: Analysis of risk indicators for bone loss and prevalence of peri-implant mucositis and peri-implantitis. J Periodontol. 2019;90(7):691-700. https://doi. org/10.1002/JPER.18-0236
- López-Martínez F, Gómez Moreno G, Olivares-Ponce P, Eduardo Jaramillo D, Eduardo Maté Sánchez de Val J, Calvo-Guirado JL. Implants failures related to endodontic treatment. An observational retrospective study. Clin Oral Implants Res. 2015;26(9):992-5. https://doi.org/10.1111/clr.12415
- Peñarrocha-Oltra D, Blaya-Tárraga JA, Menéndez-Nieto I, Peñarrocha-Diago M, Peñarrocha-Diago M. Factors associated with early apical peri-implantitis: A retrospective study covering a 20-year period. Int J Oral Implantol (Berl). 2020;13(1):65-73.
- Saleh MHA, Khurshid H, Travan S, Sinjab K, Bushahri A, Wang HL. Incidence of retrograde peri-implantitis in sites with previous apical surgeries: A retrospective study. J Periodontol. 2021;92(1):54-61. https://doi.org/10.1002/JPER.20-0056
- Necula MG, Mazare A, Ion RN, Ozkan S, Park J, Schmuki P, Cimpean A. Lateral spacing of TiO2 nanotubes modulates osteoblast behavior. Materials (Basel). 2019;12(18):2956. https://doi.org/10.3390/ma12182956
- Ferrà-Cañellas MDM, Llopis-Grimalt MA, Monjo M, Ramis JM. Tuning nanopore diameter of titanium surfaces to improve human gingival fibroblast response. Int J Mol Sci. 2018;22;19(10):2881. https://doi.org/10.3390/ijms19102881
- Llopis-Grimalt MA, Amengual-Tugores AM, Monjo M, Ramis JM. Oriented cell alignment induced by a nanostructured titanium surface enhances expression of cell differentiation markers. Nanomaterials (Basel). 2019;9(12):1661. https://doi. org/10.3390/nano9121661
- Yin D, Komasa S, Yoshimine S, Sekino T, Okazaki J. Effect of mussel adhesive protein coating on osteogenesis in vitro and osteointegration in vivo to alkali-treated titanium with nanonetwork structures. Int J Nanomedicine. 2019;23;14:3831-43. https://doi.org/10.2147/IJN.S206313
- Sennerby L, Dasmah A, Larsson B, Iverhed M. Bone tissue responses to surface-modified zirconia implants: A histomorphometric and removal torque study in the rabbit. Clin Implant Dent Relat Res. 2005;7:13-20. https://doi. org/10.1111/j.1708-8208.2005.tb00070.x
- Mihatovic I, Golubovic V, Becker J, Schwarz F. Bone tissue response to experimental zirconia implants. Clin Oral Investig. 2017;21(2):523-32. https:// doi.org/10.1007/s00784-016-1904-2
- Taniguchi Y, Kakura K, Yamamoto K, Kido H, Yamazaki J. Accelerated osteogenic differentiation and bone formation on zirconia with surface grooves created with fiber laser irradiation. Clin Implant Dent Relat Res. 2016;18(5):883-94. https:// doi.org/10.1111/cid.12366
- Hafezeqoran A, Koodaryan R. Effect of zirconia dental implant surfaces on bone integration: A systematic review and meta-analysis. Biomed Res Int. 2017;2017:9246721. https://doi.org/10.1155/2017/9246721
- Saulacic N, Erdösi R, Bosshardt DD, Gruber R, Buser D. Acid and alkaline etching of sandblasted zirconia implants: A histomorphometric study in miniature pigs. Clin Implant Dent Relat Res. 2014;16(3):313-22. https://doi.org/10.1111/cid.12070
- Brezavšček M, Fawzy A, Bächle M, Tuna T, Fischer J, Att W. The effect of UV treatment on the osteoconductive capacity of zirconia-based materials. Materials (Basel). 2016;9(12):958. https://doi.org/10.3390/ma9120958
- Zhang F, Spies BC, Willems E, Inokoshi M, Wesemann C, Cokic SM, et al. 3D printed zirconia dental implants with integrated directional surface pores combine mechanical strength with favorable osteoblast response. Acta Biomater. 2022;150:427-41. https://doi.org/10.1016/j.actbio.2022.07.030
- Ren B, Wan Y, Liu C, Wang H, Yu M, Zhang X, et al. Improved osseointegration of 3D printed Ti-6Al-4V implant with a hierarchical micro/nano surface topography: An in vitro and in vivo study. Mater Sci Eng C Mater Biol Appl. 2021;118:111505. https://doi.org/10.1016/j.msec.2020.111505
- da Silva RA, da Silva Feltran G, Ferreira MR, Wood PF, Bezerra F, Zambuzzi WF. The impact of bioactive surfaces in the early stages of osseointegration: an in vitro comparative study evaluating the HAnano® and SLActive® super hydrophilic surfaces. Biomed Res Int. 2020:3026893. https://doi.org/10.1155/2020/3026893
- Goldschmidt GM, Krok-Borkowicz M, Zybała R, Pamuła E, Telle R, Conrads G, et al. Biomimetic in situ precipitation of calcium phosphate containing silver nanoparticles on zirconia ceramic materials for surface functionalization in terms of antimicrobial and osteoconductive properties. Dent Mater. 2021;37(1):10-8. https://doi.org/10.1016/j.dental.2020.09.018
- de Lima Cavalcanti JH, Matos PC, Depes de Gouvêa CV, Carvalho W, CalvoGuirado JL, Aragoneses JM, et al. In vitro assessment of the functional dynamics of titanium with surface coating of hydroxyapatite nanoparticles. Materials (Basel). 2019;12(5):840. https://doi.org/10.3390/ma12050840
- Schünemann FH, Galárraga-Vinueza ME, Magini R, Fredel M, Silva F, Souza JCM, et al. Zirconia surface modifications for implant dentistry. Mater Sci Eng C Mater Biol Appl. 2019;98:1294-305. https://doi.org/10.1016/j.msec.2019.01.062
- Skallevold HE, Rokaya D, Khurshid Z, Zafar MS. Bioactive glass applications in dentistry. Int J Mol Sci. 2019;20(23):5960. https://doi.org/10.3390/ijms20235960
- Lung CYK, Abdalla MM, Chu CH, Yin I, Got SR, Matinlinna JP. A multi-elementdoped porous bioactive glass coating for implant applications. Materials (Basel). 2021;14(4):961. https://doi.org/10.3390/ma14040961
- Xing H, Wang X, Xiao G, Zhao Z, Zou S, Li M, et al. Hierarchical assembly of nanostructured coating for siRNA-based dual therapy of bone regeneration and revascularization. Biomaterials. 2020;235:119784. https://doi.org/10.1016/j. biomaterials.2020.119784
- Wu K, Liu M, Li N, Zhang L, Meng F, Zhao L, et al. Chitosan-miRNA functionalized microporous titanium oxide surfaces via a layer-by-layer approach with a sustained release profile for enhanced osteogenic activity. J Nanobiotechnology. 2020;18(1):127. https://doi.org/10.1186/s12951-020-00674-7
- Miyamoto N, Yamachika R, Sakurai T, Hayakawa T, Hosoya N. Bone response to titanium implants coated with double- or single-stranded DNA. Biomed Res Int. 2018:9204391. https://doi.org/10.1155/2018/9204391
- Sakurai T, Yoshinari M, Toyama T, Hayakawa T, Ohkubo C. Effects of a multilayered DNA/protamine coating on titanium implants on bone responses. J Biomed Mater Res A. 2016;104(6):1500-9. https://doi.org/10.1002/jbm.a.35679
- Malkawi WI, Laird NZ, Phruttiwanichakun P, Mohamed E, Elangovan S, Salem AK. Application of lyophilized gene-delivery formulations to dental implant surfaces: Non-cariogenic lyoprotectant preserves transfection activity of polyplexes long-term. J Pharm Sci. 2023;112(1):83-90. https://doi.org/10.1016/j. xphs.2022.11.008
- Haimov H, Yosupov N, Pinchasov G, Juodzbalys G. Bone morphogenetic protein coating on titanium implant surface: A systematic review. J Oral Maxillofac Res. 2017;8(2):e1. https://doi.org/10.5037/jomr.2017.8201
- Uijlenbroek HJJ, Lin X, Liu T, Zheng Y, Wismeijer D, Liu Y. Bone morphogenetic protein-2 incorporated calcium phosphate graft promotes peri-implant bone defect healing in dogs: A pilot study. Clin Exp Dent Res. 2022;8(5):1092-1102. https://doi.org/10.1002/cre2.613
- Chang YY, Lee S, Jeong HJ, Cho YS, Lee SJ, Yun JH. In vivo evaluation of 3D printed polycaprolactone composite scaffold and recombinant human bone morphogenetic protein-2 for vertical bone augmentation with simultaneous implant placement on rabbit calvaria. J Biomed Mater Res B Appl Biomater. 2022;110(5):1103-12. https://doi.org/10.1002/jbm.b.34984
- James GA, Boegli L, Hancock J, Bowersock L, Parker A, Kinney BM. Bacterial adhesion and biofilm formation on textured breast implant shell materials. Aesthetic Plast Surg. 2019;43(2):490-497. https://doi.org/10.1007/s00266-018- 1234-7
- Nelson K, Hesse B, Addison O, Morrell AP, Gross C, Lagrange A, et al. Distribution and chemical speciation of exogenous micro- and nanoparticles in inflamed soft tissue adjacent to titanium and ceramic dental implants. Anal Chem. 2020;92(21):14432-43. https://doi.org/10.1021/acs.analchem.0c02416
- Souza W, Piperni SG, Laviola P, Rossi AL, Rossi MID, Archanjo BS, et al. The two faces of titanium dioxide nanoparticles bio-camouflage in 3D bone spheroids. Sci Rep. 2019;9(1):9309. https://doi.org/10.1038/s41598-019-45797-6
- Messous R, Henriques B, Bousbaa H, Silva FS, Teughels W, Souza JCM. Cytotoxic effects of submicron- and nano-scale titanium debris released from dental implants: An integrative review. Clin Oral Investig. 2021;25(4):1627-1640. https://doi.org/10.1007/s00784-021-03785-z
- Oleshko O, Liubchak I, Husak Y, Korniienko V, Yusupova A, Oleshko T, et al. In vitro biological characterization of silver-doped anodic oxide coating on titanium. Materials (Basel). 2020;13(19):4359. https://doi.org/10.3390/ma13194359
- Krce L, Šprung M, Maravić A, Umek P, Salamon K, Krstulović N, et al. Bacteria exposed to silver nanoparticles synthesized by laser ablation in water: Modelling E. coli growth and inactivation. Materials (Basel). 2020;13(3):653. https://doi.org/10.3390/ma13030653
- Fialho L, Grenho L, Fernandes MH, Carvalho S. Porous tantalum oxide with osteoconductive elements and antibacterial core-shell nanoparticles: A new generation of materials for dental implants. Mater Sci Eng C Mater Biol Appl. 2021;120:111761. https://doi.org/10.1016/j.msec.2020.111761
- Matter MT, Maliqi L, Keevend K, Guimond S, Ng J, Armagan E, et al. One-step synthesis of versatile antimicrobial nano-architected implant coatings for hard and soft tissue healing. ACS Appl Mater Interfaces. 2021;21;13(28):33300-10. https://doi.org/10.1021/acsami.1c10121
- Halkai KR, Mudda JA, Shivanna V, Rathod V, Halkai RS. Biosynthesis, characterization and antibacterial efficacy of silver nanoparticles derived from endophytic fungi against P. gingivalis. J Clin Diagn Res. 2017;11(9):92-6. https:// doi.org/10.7860/JCDR/2017/29434.10681
- Gunputh UF, Le H, Lawton K, Besinis A, Tredwin C, Handy RD. Antibacterial properties of silver nanoparticles grown in situ and anchored to titanium dioxide nanotubes on titanium implant against Staphylococcus aureus. Nanotoxicology. 2020;14(1):97-110. https://doi.org/10.1080/17435390.2019.1665727
- Qiao S, Cao H, Zhao X, Lo H, Zhuang L, Gu Y, et al. Ag-plasma modification enhances bone apposition around titanium dental implants: An animal study in Labrador dogs. Int J Nanomedicine. 2015;10:653-64. https://doi.org/10.2147/ IJN.S73467
- Matsubara VH, Igai F, Tamaki R, Tortamano Neto P, Nakamae AE, Mori M. Use of silver nanoparticles reduces internal contamination of external hexagon implants by Candida albicans. Braz Dent J. 2015;26(5):458-62. https://doi. org/10.1590/0103-644020130087
- Xie H, Wang P, Wu J. Effect of exposure of osteoblast-like cells to low-dose silver nanoparticles: Uptake, retention and osteogenic activity. Artif Cells Nanomed Biotechnol. 2019;47(1):260-7. https://doi.org/10.1080/21691401.2018.155259 4
- Wang P, Qiao P, Xing H, Zhang R, Lingling E, Liu H. Cytotoxicity, oxidative stress, and autophagy effects of tantalum nanoparticles on MC3T3-E1 mouse osteoblasts. J Nanosci Nanotechnol. 2020;20(3):1417-1424. https://doi.org/10.1166/ jnn.2020.17158
- Salaie RN, Besinis A, Le H, Tredwin C, Handy RD. The biocompatibility of silver and nanohydroxyapatite coatings on titanium dental implants with human primary osteoblast cells. Mater Sci Eng C Mater Biol Appl. 2020;107:110210. https://doi. org/10.1016/j.msec.2019.110210
- Sobolev A, Valkov A, Kossenko A, Wolicki I, Zinigrad M, Borodianskiy K. Bioactive coating on Ti alloy with high osseointegration and antibacterial ag nanoparticles. ACS Appl Mater Interfaces. 2019;11(43):39534-44. https://doi.org/10.1021/ acsami.9b13849
- Wang Z, Mei L, Liu X, Zhou Q. Hierarchically hybrid biocoatings on Ti implants for enhanced antibacterial activity and osteogenesis. Colloids Surf B Biointerfaces. 2021;204:111802. https://doi.org/10.1016/j.colsurfb.2021.111802
- Cao H, Yang Y, Liang M, Ma Y, Sun N, Gao X, Li J. Pt@polydopamine nanoparticles as nanozymes for enhanced photodynamic and photothermal therapy. Chem Commun (Camb). 2021;57(2):255-8. https://doi.org/10.1039/d0cc07355e
- Li D, Qiu Y, Zhang S, Zhang M, Chen Z, Chen J. A multifunctional antibacterial and osteogenic nanomedicine: QAS-modified core-shell mesoporous silica containing Ag nanoparticles. Biomed Res Int. 2020;2020:4567049. https://doi. org/10.1155/2020/4567049
- Ding Y, Yuan Z, Liu P, Cai K, Liu R. Fabrication of strontium-incorporated protein supramolecular nanofilm on titanium substrates for promoting osteogenesis. Mater Sci Eng C Mater Biol Appl. 2020;111:110851. https://doi.org/10.1016/j. msec.2020.110851
- Cheng YF, Zhang JY, Wang YB, Li CM, Lu ZS, Hu XF, et al. Deposition of catecholfunctionalized chitosan and silver nanoparticles on biomedical titanium surfaces for antibacterial application. Mater Sci Eng C Mater Biol Appl. 2019;98:649-56. https://doi.org/10.1016/j.msec.2019.01.019
- Lin MH, Wang YH, Kuo CH, Ou SF, Huang PZ, Song TY, et al. Hybrid ZnO/chitosan antimicrobial coatings with enhanced mechanical and bioactive properties for titanium implants. Carbohydr Polym. 2021;257:117639. https://doi. org/10.1016/j.carbpol.2021.117639
- Zhang C, Hui D, Du C, Sun H, Peng W, Pu X, et al. Preparation and application of chitosan biomaterials in dentistry. Int J Biol Macromol. 2021;167:1198-210. https://doi.org/10.1016/j.ijbiomac.2020.11.073
- Martinez LR, Mihu MR, Tar M, Cordero RJ, Han G, Friedman AJ, et al. Demonstration of antibiofilm and antifungal efficacy of chitosan against candidal biofilms, using an in vivo central venous catheter model. J Infect Dis. 2010;201(9):1436-40. https://doi.org/10.1086/651558
- Kara F, Aksoy EA, Yuksekdag Z, Hasirci N, Aksoy S. Synthesis and surface modification of polyurethanes with chitosan for antibacterial properties. Carbohydr Polym. 2014;112:39-47. https://doi.org/10.1016/j.carbpol.2014.05.019
- Bulwan M, Wójcik K, Zapotoczny S, Nowakowska M. Chitosan-based ultrathin films as antifouling, anticoagulant and antibacterial protective coatings. J Biomater Sci Polym Ed. 2012;23(15):1963-80. https://doi.org/10.1163/092050611X601711
- Takanche JS, Kim JE, Kim JS, Lee MH, Jeon JG, Park IS, et al. Chitosan-gold nanoparticles mediated gene delivery of c-myb facilitates osseointegration of dental implants in ovariectomized rat. Artif Cells Nanomed Biotechnol. 2018;46(sup3):S807-S817. https://doi.org/10.1080/21691401.2018.1513940
- Pourhajibagher M, Rokn AR, Barikani HR, Bahador A. Photo-sonodynamic antimicrobial chemotherapy via chitosan nanoparticles-indocyanine green against polymicrobial periopathogenic biofilms: Ex vivo study on dental implants. Photodiagnosis Photodyn Ther. 2020;31:101834. https://doi.org/10.1016/j. pdpdt.2020.101834
- Khan SN, Koldsland OC, Roos-Jansåker AM, Wohlfahrt JC, Verket A, Mdala I, et al. Non-surgical treatment of mild to moderate peri-implantitis using an oscillating chitosan brush or a titanium curette – A randomized multicentre controlled clinical trial. Clin Oral Implants Res. 2022;33(12):1254-64. https://doi. org/10.1111/clr.14007
- Silveira SR, Sahm BD, Kreve S, Dos Reis AC. Osseointegration, antimicrobial capacity and cytotoxicity of implant materials coated with graphene compounds: A systematic review. Jpn Dent Sci Rev. 2023;59:303-11. https://doi.org/10.1016/j. jdsr.2023.08.005
- Al-Jumaili A, Alancherry S, Bazaka K, Jacob MV. Review on the antimicrobial properties of carbon nanostructures. Materials (Basel). 2017;10(9):1066. https://doi.org/10.3390/ma10091066
- Pranno N, La Monaca G, Polimeni A, Sarto MS, Uccelletti D, Bruni E, et al. Antibacterial activity against Staphylococcus aureus of titanium surfaces coated with graphene nanoplatelets to prevent peri-implant diseases. An in-vitro pilot study. Int J Environ Res Public Health. 2020;17(5):1568. https://doi.org/10.3390/ ijerph17051568
- Wang Y, Xu Y, Zhang X, Liu J, Han J, Zhu S, et al. Near-infrared excited graphene oxide/silver nitrate/chitosan coating for improving antibacterial properties of titanium implants. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2023;37(8):937- 44. https://doi.org/10.7507/1002-1892.202303041
- Gao Y, Kang K, Luo B, Sun X, Lan F, He J, et al. Graphene oxide and mineralized collagen-functionalized dental implant abutment with effective soft tissue seal and romotely repeatable photodisinfection. Regen Biomater. 2022;9. https://doi. org/10.1093/rb/rbac024
Сведения об авторах:
Блинова Алиса Владимировна,
кандидат медицинских наук, ассистент кафедры пародонтологии, Тверской государственный медицинский университет
ORCID ID: 0000-0002-4315-163X
SPIN-код: 4239-0519
Author ID: 985695
E-mail: blinova-alisa@mail.ru
Авакян Айк Артурович,
ординатор 1 года обучения кафедры стоматологии, Тверской государственный медицинский университет
ORCID ID: 0009-0002-9149-7552
E-mail: avakyan.aik007@yandex.ru
Королёв Игорь Викторович,
ординатор 1 года обучения кафедры стоматологии общей практики Медицинского института, Белгородский государственный национальный исследовательский университет
ORCID ID: 0009-0008-4251-8445
E-mail: notyouraddon@gmail.com
Трофимов Илья Алексеевич,
студент 5 курса лечебного факультета, Тверской государственный медицинский университет
ORCID ID: 0009-0004-5825-9434
E-mail: maddissonxd@mail.ru
Информация об источнике поддержки в виде грантов, оборудования, лекарственных препаратов
Финансовой поддержки со стороны компаний-производителей лекарственных препаратов и медицинского оборудования авторы не получали
Конфликт интересов: отсутствует
Адрес для корреспонденции:
Блинова Алиса Владимировна
кандидат медицинских наук, ассистент кафедры пародонтологии, Тверской государственный медицинский университет
170100, Российская Федерация, г. Тверь, ул. Советская, 4
Тел.: +7 (919) 0516059
E-mail: blinova-alisa@mail.ru
This work is licensed under a Creative Commons Attribution 4.0 International License.