Lections

doi: 10.25005/2074-0581-2020-22-3-471-477
MEASUREMENT OF LUNG DEAD SPACE VOLUME BY CAPNOVOLUMETRY

T.A. Miroshkina, S.A. Shustova

Department of Pathophysiology, Ryazan State Medical University named after Academician I .P. Pavlov, Ryazan, Russian Federation

The article provides information on the lung dead space – a part of the respiratory volume that does not participate in gas exchange. The anatomical and alveolar dead spaces jointly together form the physiological dead space. The article describes methods for determining the volume of dead spaces using the capnovolumetry. The volume of physiological dead space is calculated using the C. Bohr equation. The volume of anatomical dead space can be determined using the equal area method proposed by W.S. Fowler. The volume of the alveolar dead space is the difference of volumes of the physiological and anatomical dead spaces. In pathology, the volume of the alveolar space and, consequently, physiological dead space can increase significantly. Determination of the volume of dead space is the significant criterion for diagnostic and predicting the outcome of a number of diseases.

Keywords: Physiological dead space , anatomical dead space , alveolar dead space , capnovolumetry, volumetric capnography.

Download file:


References
  1. Grippi MA. Patofiziologiya lyogkikh [Pulmonary pathophysiology]. Per. s angl. Moscow, RF: Binom; 2005. 304 p.
  2. Uest Dzh. Fiziologiya dykhaniya. Osnovy [Respiratory physiology. The essentials]. Per. s angl. Moscow, RF: Mir; 1988. 196 p.
  3. Shishkin GS, Ustyuzhaninova NV, Gladyr SN. Otsenka intensivnosti gazoobmena v mikrostrukturakh lyogochnogo atsinusa s ispol’zovaniem analiticheskogo modelirovaniya [Rating of intensity of gas exchange in microstructures of lung acinus with use of analytical modelling]. Byulleten’ fiziologii i patologii dykhaniya. 2007;26:7-12.
  4. Naumenko ZhK, Chernyak AV, Neklyudova GV, Chuchalin AG. Ventilyatsionno- perfuzionnoe otnoshenie [Ventilation/perfusion ratio]. Prakticheskaya pul’monologiya. 2018;4:86-90.
  5. Noble MIM, Langley F, Buckman M, Vernon P, Seed A, Jewkes R, et al. Comparison of ventilation/perfusion lung-imaging and dead-space measurements in airway disease. Clin Sci. 1981;60(1):17-23. Available from: https:// doi.org/10.1042/cs0600017
  6. Drummond GB, Fletcher R. Editorial II: Deadspace: invasive or not? Br J Anaesth. 2006;96(1):4-7. Available from: https://doi.org/10.1093/bja/aei289
  7. Murias G, Blanch L, Lucangelo U. The physiology of ventilation. Resp Care. 2014;59(11):1795-807. Available from: https://doi.org/10.4187/respcare. 03377
  8. Plantier L, Delclaux C. Increased physiological dead space at exercise is a marker of mild pulmonary or cardiovascular disease in dyspneic subjects. Eur Clin Respir J. 2018;5(1):1492842. Available from: https://doi.org/10.1080/20 018525.2018.1492842
  9. Hamazaki N, Masuda T, Kamiya K, Matsuzawa R, Nozaki K, Maekawa E, et al. Respiratory muscle weakness increases dead-space ventilation ratio aggravating ventilation-perfusion mismatch during exercise in patients with chronic heart failure. Respirology. 2018;24(2):154-61. Available from: https://doi. org/10.1111/resp.13432
  10. Plantier L, Cazes A, Dinh-Xuan A-T, Bancal C, Marchand-Adam S, Crestani B. Physiology of the lung in idiopathic pulmonary fibrosis. Eur Respir Rev. 2018;27(147):170062. Available from: https://doi. org/10.1183/16000617.0062-2017
  11. Smith JR, Olson TP. Ventilatory constraints influence physiological dead space in heart failure. Exp Physiol. 2018;104(1):70-80. Available from: https://doi. org/10.1113/ep087183
  12. Fowler WS. Lung function studies. V. Respiratory dead space in old age and in pulmonary emphysema. J Clin Invest. 1950;29(11):1439-44.
  13. Lucangelo U, Blanch L. Dead space. In: Pinsky MR, Brochard L, Mancebo J. Applied physiology in intensive care medicine. Berlin, Heidelberg, Germany: Springer-Verlag; 2006. p. 17-20. Available from: https://doi.org/10.1007/3- 540-37363-2_5
  14. Levite EM, Uklonskiy AN, Kulakov VF. Rol’ myortvogo prostranstva v formirovanii i diagnostike dykhatel’noy nedostatochnosti [Role of dead space in the development and diagnosis of respiratory failure]. Obshchaya reanimatologiya. 2009;5(2):76-8.
  15. Ponomaryova IB, Subbotin SV. Vozmozhnosti metoda ob”yomnoy kapnografii v izuchenii lyogochnykh funktsiy u bol’nykh KhOBL [Possibilities of volumetric capnography method in the study of pulmonary functions in patients with COPD]. Nauka molodykh. 2016;1:68-73
  16. Gazmuri RJ, Patel DJ, Stevens R, Smith S. Circulatory collapse, right ventricular dilatation, and alveolar dead space: A triad for the rapid diagnosis of massive pulmonary embolism. Am J Emerg Med. 2017;35(6):936.e1-936.e4. Available from: https://doi.org/10.1016/j.ajem.2016.12.039
  17. Subbotin SV. Diagnosticheskoe znachenie metoda ob”yomnoy kapnografii v obsledovanii patsientov s bronkhial’noy astmoy [Diagnostic significance of volumetric capnography in examination of patients with bronchial asthma]. Rossiiskiy mediko-biologicheskiy vestnik imeni akademika I.P. Pavlova. 2018;26(3):388-95.
  18. Lucangelo U, Bernabè F, Vatua S, Degrassi G, Villagrà A, Fernandez R, et al. Prognostic value of different dead space indices in mechanically ventilated patients with acute lung injury and ARDS. Chest. 2008;133(1):62-71. Available from: https://doi.org/10.1378/chest.07-0935
  19. Kallet RH, Zhuo H, Liu KD, Calfee CS, Matthay MA. The association between physiologic dead-space fraction and mortality in subjects with ARDS enrolled in a prospective multi-center clinical trial. Respir Care. 2013 31;59(11):1611- 8. Available from: https://doi.org/10.4187/respcare.02593
  20. Cigarroa CL, van den Bosch SJ, Tang X, Gauvreau K, Baird CW, DiNardo JA, et al. Measurement of dead space fraction upon ICU admission predicts length of stay and clinical outcomes following bidirectional cavopulmonary anastomosis. Pediatr Crit Care Med. 2018;19(1):23-31. Available from: https://doi. org/10.1097/pcc.0000000000001378
  21. Ferluga M, Lucangelo U, Blanch L. Dead space in acute respiratory distress syndrome. Ann Transl Med. 2018;6(19):388-8. Available from: https://doi. org/10.21037/atm.2018.09.46
  22. Romero PV, Lucangelo U, Lopez Aguilar J, Fernandez R, Blanch L. Physiologically based indices of volumetric capnography in patients receiving mechanical ventilation. Eur Respir J. 1997;10(6):1309-15. Available from: https://doi. org/10.1183/09031936.97.10061309
  23. Chyornyy SM, Sanginov AB, Mosin IV. Osobennosti ventilyatsionnoy podderzhki v endoskopicheskoy khirurgii stenozov trakhei i glavnykh bronkhov [The peculiarities of ventilation-support in endoscopic surgery of stenosis of trachea and large bronches]. Vestnik Avitsenny [Avicenna Bulletin]. 2009;2:33-9.
  24. Sinha P, Soni N. Comparison of volumetric capnography and mixed expired gas methods to calculate physiological dead space in mechanically ventilated ICU patients. Intensive Care Med. 2012;38(10):1712-7. Available from: https://doi.org/10.1007/s00134-012-2670-5
  25. Bhalla AK, Rubin S, Newth CJ, Ross P, Morzov R, Soto-Campos G, et al. Monitoring dead space in mechanically ventilated children: volumetric capnography versus time-based capnography. Respir Care. 2015;60(11):1548-55. Available from: https://doi.org/10.4187/respcare.03892
  26. Dassios T, Dixon P, Hickey A, Fouzas S, Greenough A. Physiological and anatomical dead space in mechanically ventilated newborn infants. Pediatr Pulmonol. 2017;53(1):57-63. Available from: https://doi.org/10.1002/ ppul.23918
  27. Devor RL, Kang P, Wellnitz C, Nigro JJ, Velez DA, Willis BC. Pulmonary dead space fraction and extubation success in children after cardiac surgery. Pediatr Crit Care Med. 2018;19(4):301-9. Available from: https://doi. org/10.1097/pcc.0000000000001456
  28. Koth AM, Kwiatkowski DM, Lim TR, Bauser-Heaton H, Asija R, McElhinney DB, et al. Association of dead space ventilation and prolonged ventilation after repair of tetralogy of Fallot with pulmonary atresia. J Thorac Cardiovasc Surg. 2018;156(3):1181-7. Available from: https://doi.org/10.1016/j. jtcvs.2018.04.088
  29. Török P, Depta F, Donic V, Nosál’ M, Imrecze S, Benová J, et al. Volumetric capnography as a tool for evaluation of alveolar ventilation effectiveness in clinical practice. General Reanimatology. 2018;14(5):16-24. Available from: https://doi.org/10.15360/1813-9779-2018-5-16-24
  30. Minatsuki S, Hatano M, Maki H, Takimoto E, Morita H, Komuro I. Analysis of oxygenation in chronic thromboembolic pulmonary hypertension using dead space ratio and intrapulmonary shunt ratio. Int Heart J. 2019;60(5):1137-41. Available from: https://doi.org/10.1536/ihj.19-079
  31. Bohr C. Ueber die Lungenathmung. Skand Arch Physiol. 1891;2:236-68.
  32. West JB. Three classical papers in respiratory physiology by Christian Bohr (1855-1911) whose work is frequently cited but seldom read. Am J Physiol Lung Cell Mol Physiol. 2019;316(4):L585-L588. Available from: https://doi. org/10.1152/ajplung.00527.2018
  33. Tusman G, Sipmann FS, Bohm SH. Rationale of dead space measurement by volumetric capnography. Anesth Analg. 2012;114(4):866-74. Available from: https://doi.org/10.1213/ane.0b013e318247f6cc
  34. Nunn JF, Holmdahl MH. Henrik Enghoff and the Volumen Inefficax. UPSALA J Med Sci. 1979;84(2):105. Available from: https://doi. org/10.3109/03009737909179145
  35. Suarez-Sipmann F, Santos A, Böhm SH, Borges JB, Hedenstierna G, Tusman G. Corrections of Enghoff’s dead space formula for shunt effects still overestimate Bohr’s dead space. Resp Physiol Neurobi 2013;189:99-105. Available from: https://doi.org/10.1016/j.resp.2013.06.020
  36. Robertson HT. Dead space: the physiology of wasted ventilation. Eur Respir J. 2014;45(6):1704-16. Available from: https://doi. org/10.1183/09031936.00137614
  37. Bourgoin P, Baudin F, Brossier D, Emeriaud G, Wysocki M, Jouvet P. Assessment of Bohr and Enghoff dead space equations in mechanically ventilated children. Respir Care. 2017;62(4):468-74. Available from: https://doi. org/10.4187/respcare.05108
  38. Verscheure S, Massion PB, Verschuren F, Damas P, Magder S. Volumetric capnography: lessons from the past and current clinical applications. Crit Care. 2016;20:184. Available from: https://doi.org/10.1186/s13054-016-1377-3
  39. Fletcher R, Jonson B, Cumming G, Brew J. The concept of deadspace with special reference to the single breath test for carbon dioxide. Br J Anaesth. 1981;53(1):77-88. Available from: https://doi.org/10.1093/bja/53.1.77
  40. Tusman G, Gogniat E, Bohm SH, Scandurra A, Suarez-Sipmann F, Torroba A, et al. Reference values for volumetric capnography-derived non-invasive parameters in healthy individuals. J Clin Monit Comput. 2013;27(3):281-8. Available from: https://.org/10.1007/s10877-013-9433-x
  41. Fowler WS. Lung function studies. II. The respiratory dead space. Am J Physiol. 1948;154:405-16.
  42. Fowler WS, Cornish ER, Kety SS. Lung function studies. VIII. Analysis of alveolar ventilation by pulmonary N2 clearance curves. Journal of Clinical Investigation. 1952;31(1):40-50. Available from: https://doi.org/10.1172/ jci102575
  43. Klocke RA. Dead space: Simplicity to complexity. J Appl Physiol. 2006;100(1):1- 2. Available from: https://doi.org/10.1152/classicessays.00037.2005
  44. Bartels J, Severinghaus JW, Forster RE, Briscoe WA, Bates DV. The respiratory dead space measured by single breath analysis of oxygen, carbon dioxide, nitrogen or helium. Journal of Clinical Investigation. 1954;33(1):41-8. Available from: https://doi.org/10.1172/jci102868
  45. Fletcher R, Jonson B. Deadspace and the single breath test for carbon dioxide during anesthesia and artificial ventilation. Br J Anaesth. 1984;56(2):109-19. Available from: https://doi.org/10.1093/bja/56.2.109
  46. Arnold JH, Thompson JE, Arnold LW. Single breath CO sub 2 analysis. Crit Care Med. 1996;24(1):96-102. Available from: https://doi.org/10.1097/00003246- 199601000-00017
  47. Tang Y, Turner MJ, Baker AB. Effects of alveolar dead-space, shunt and V˙/ Q˙distribution on respiratory dead-space measurements. Br J Anaesth. 2005;95(4):538-48. Available from: https://doi.org/10.1093/bja/aei212
  48. Tang Y, Turner MJ, Baker AB. Systematic errors and susceptibility to noise of four methods for calculating anatomical dead space from the CO2expirogram. Br J Anaesth. 2007;98(6):828-34. Available from: https://doi. org/10.1093/bja/aem090

Authors' information:


Miroshkina Tatyana Aleksandrovna
Candidate of Medical Sciences, Associate Professor of the Department of Pathophysiology, Ryazan State Medical University named after Academician I.P. Pavlov
Researcher ID: AAG-5068-2020
ORCID ID: 0000-0002-9179-5181
SPIN: 2779-0313
Author ID: 966788
E-mail: mirta62@yandex.ru

Shustova Svetlana Aleksandrovna
Candidate of Medical Sciences, Associate Professor, Associate Professor of the Department of Pathophysiology, Ryazan State Medical University named after Academician I.P. Pavlov
Researcher ID: AAG-50-64-2020
Scopus ID: 57201741897
ORCID ID: 0000-0002-5528-6742
SPIN: 8866-5935
Author ID: 988258
E-mail: sv_shustova@mail.ru

Information about support in the form of grants, equipment, medications

The authors did not receive financial support from manufacturers of medicines and medical equipment

Conflicts of interest: No conflict

Address for correspondence:


Miroshkina Tatyana Aleksandrovna
Candidate of Medical Sciences, Associate Professor of the Department of Pathophysiology, Ryazan State Medical University named after Academician I.P. Pavlov

390026, Russian Federation, Ryazan, Vysokovoltnaya str., 9

Tel.: +7 (910) 5603646

E-mail: mirta62@yandex.ru

Materials on the topic: