Literature Reviews

doi: 10.25005/2074-0581-2019-21-3-496-501
THE USE OF POLYMERIC MATERIALS IN THE TREATMENT OF CORNEAL DISEASE

E.O. Filippova1,2,3, A.S. Chernyakov3, N.M. Ivanova1

1Laboratory of Plasma Hybrid Systems of the Nuclear Technology Engineering School, National Research Tomsk Polytechnic University, Tomsk, Russian Federation
2Department of Ophthalmology, Siberian State Medical University, Tomsk, Russian Federation
3Department of Histology, Cytology, and Embryology, Siberian State Medical University, Tomsk, Russian Federation

The article presents a critical assessment of the use of polymeric materials in keratoplasty, describing possible postoperative complications. The benefits and disadvantages of implanting various bio-compatible polymers: glyceryl-methacrylate, plastics ACR-7, plexiglass, polymethylmethacrylate, gelatin, hydrogel, and its modifications and others. The significant part of the article focuses on the use of biopolymers, many of which, according to studies, cause an inflammatory reaction, reorganization of collagen fibers and the change of the implant itself. A separate aspect of the article is the use of biodegradable polymers in keratoplasty. The great benefits of using these materials are the ability to control the rate of biodegradation by changing their structure by adding anions and cations superficially active substances. Of all the forms of polymers suitable for ophthalmology in keratoplasty, microspheres, films, and membranes have become very popular. Numerous studies using biodegradable materials have shown that despite the disadvantages (high cost, the complexity of manufacturing), of this type of polymers have great potential in the treatment of various corneal diseases.

Keywords: Keratoplasty, polymeric materials, cornea, biodegradable materials, biocompatibility.

Download file:


References
  1. Francis WP, Marianne O. Price DSEK: What you need to know about endothelial keratoplasty. SLACK Incorporated; 2009. 191 p.
  2. Odorcic S, Haas W, Gilmore MS, Dohlman CH. Fungal infections after Boston type 1 Keratoprosthesis implantation: Literature review and in vitro antifungal activity of hypochlorous acid. Cornea. 2015;34(12):1599-605.
  3. Marvanova LR, Marvanova ZR. Sposob lecheniya bullyoznoy keratopatii [Method for the treatment of bullous keratopathy]. Patent Rossiyskoy Federatsii № 2539662. 20.01.2015.
  4. Izmaylova SB, Malyugin BE, Poruchikova EP. Matematicheskoe obosnovanie novoy modeli polimernykh rogovichnykh segmentov dlya intrastromal’noy keratoplastiki [Mathematical substantiation of the new model of polymer corneal segments for intrastromal keratoplasty.]. Oftal’mokhirurgiya. 2-17;4:30-4.
  5. Azar TD. Refractive Surgery. Elsevier Health Sciences; 2019. 562 р.
  6. Agarwal A, Agarwal A, Jacob S. Phacoemulsification. Jaypee Brothers Medical Publishers; 2012. 612 p.
  7. Andreghetti E, Hashimoto M, Domingues MAC, Antunes VAC, Segundo PDS, Silva MRBD. Biocompatibility of Ferrara intracorneal ring segment with and without chondroitin sulfate coating. Clinical and histopathological evaluation in rabbits. Acta Cirurgica Brasileira. 2013;28(9):632-40.
  8. Yavuz B, Pehlivan SВ, Ünlü N. An overview on dry eye treatment: approaches for cyclosporin a delivery. The Scientific World Journal. 2012;2012:1-11.
  9. Ershuai Z, Chuanshun Z, Jun Y, Hong S, Xiaomin Z, Suhua L, et al. Electrospun PDLLA/PLGA composite membranes for potential application in guided tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2016;58:278-85.
  10. Licciardi M, Stefano D, Craparo M, Amato EF, Fontana G, Cavallaro G, et al. PHEA-graft-polybutylmethacrylate copolymer microparticles for delivery of hydrophobic drugs. International Journal of Pharmaceutics. 2012;433(1- 2):16-24.
  11. Saini S, Kumar S, Choudhary M, Nitesh, Budhwar V. Microspheres as controlled drug delivery system: An updated review. Int J Pharm Sci Res. 2018;9(5):1760-8.
  12. Rong X, Yuan W, Lu Y, Mo X. Safety evaluation of poly(lactic-co-glycolic acid)/ poly(lactic-acid) microspheres through intravitreal injection in rabbits. International Journal of Nanomedicine. 2014;9:3057-68.
  13. Yang H, Tyagi P, Kadam RS, Holden CA, Kompella UB. Hybrid Dendrimer hydrogel/PLGA nanoparticle platform sustains drug delivery for one week and antiglaucoma effects for four days following one-time topical administration. ACS Nano. 2012;6(9):7595-606.
  14. Fei WL, Chen JQ, Yuan J, Quan DP, Zhou SY. Preliminary study of the effect of FK506 nanospheric-suspension eye drops on rejection of penetrating keratoplasty. J Ocul Pharmacol Ther. 2008;24(2):235-44.
  15. Sethuraman S, Krishnan UM, Subramanian A. Biomaterials and nanotechnology for tissue engineering. CRC Press; 2016. 352 p.
  16. Haleh B, Masoud S, Saied SH, Hashemi H, Shabani I, Shafiee A, et al. Poly (ε-caprolactone) nanofibrous ring surrounding a polyvinyl alcohol hydrogel for the development of a biocompatible two-part artificial cornea. Dove Press Journal: International Journal of Nanomedicine. 2011;6:1509-15.
  17. Zhaoliang Z, Lu X, Hao C, Xingyi L. Rapamycin-loaded poly(e-caprolactone)-poly(ethyleneglycol)-poly(e-caprolactone) nanoparticles: preparation, characterization and potential application in corneal transplantation. Journal of Pharmacy and Pharmacology. 2013;66:557-63.
  18. Dronov MM, Karanov VS. Sposob lecheniya bullyoznoy keratopatii [A method for the treatment of bullous keratopathy]. Patent Rossiyskoy Federatsii № 208236410–4M. 21.01.2008
  19. Meichsner J, Schmidt M, Schneider R, Wagner HE. Nonthermal plasma chemistry and physics. CRC Press; 2012. 564 p.
  20. Bagrov SN, Maklakova IA, Larionov ЕV, Timoshkina NT, Medvedev IB, Karamyan AA, i dr. Sposob uluchsheniya biosovmestimosti intrakorneal’nykh linz iz gidrogeley s tkanyami rogovitsy, metodom nasyshcheniya ikh rastvorom glikozaminoglikanov [Method for improving the biocompatibility of intracorneal lenses from hydrogels with corneal tissues, by saturating them with glycosaminoglycan solution]. Oftal’mokhirurgiya. 1999;1:71-2.
  21. Druzhinin IB. Sposob lecheniya bullyoyznoy keratopatii [A method for the treatment of bullous keratopathy]. Patent Rossiyskoy Federatsii № 2405513. 13.10.2009.
  22. Shusterov YuA. Morfologicheskie aspekty refraktsionnoy keratoplastiki gidrogelevym eksplantatom [Morphological aspects of refractive keratoplasty by hydrogel explant]. Sovremennye tekhnologii v oftal’mologii. 2014;3:113.
  23. Shusterov YuA, Bragin VE, Eliseeva EV, Karibaeva DS. Modifitsirovannye sinteticheskie materialy dlya oftal’mokhirurgii [Modified synthetic materials for ophthalmic surgery]. Sovremennye tekhnologii kataraktal’noy i refraktsionnoy khirurgii. Moskva; 2009. p. 50-51.
  24. Fyodorov SN, Aksyonov AO, Omiadze MR. Korrektsiya afakii metodom implantatsii IOL iz novogo biosovmestimogo materiala sopolimera kollagena (pervyy opyt primeneniya) [Aphakia correction by implanting an IOL from a new biocompatible material of a collagen copolymer (first experience of application)]. Oftal’mokhirurgiya. 1992;2:24-9.
  25. Fuchsluger T, Salehi S, Petsch CB. Bachmann neue Möglichkeiten der Augenoberflächen Rekonstruktion. Der Ophthalmologe. 2014;11:1019-26.
  26. Hackett JM, Lagali N, Merrett K, Edelhauser H, Sun Y, Gan L, et al. Biosynthetic corneal implants for replacement of pathologic corneal tissue: performance in a controlled rabbit alkali burn model. Invest Ophthalmol Vis Sci. 2011;52:651-7.
  27. Shulanova ZhZh. Perspektivy primeneniya v khirurgii biopolimernykh matriksov na osnove gialuronovoy kisloty [Prospects for use in surgery biopolymer matrices based on hyaluronic acid]. Meditsinskiy vestnik Bashkortostana. 2016;11(1):135-8.
  28. Leone G, Barbucci R. Polysaccharide based hydrogels for biomedical applications. Hydrogels. 2009;1:25-41.
  29. Berkay O, Brown KD, Blencowe A, Daniell M, Stevens GW, Qiao G. Ultrathin chitosan-poly(ethylene glycol) hydrogel films for corneal tissue engineering. Acta Materialia. 2013;9(5):6594-605.
  30. Dzhanaeva ZN, Khripun KV, Konenkova YaS, Nikolaenko VP. Tektonicheskaya keratoplastika s ispol’zovaniem poristogo politetraftoretilena [Tectonic keratoplasty using porous polytetrafluoroethylene]. Oftal’mologicheskie vedomosti. 2013;6(4):9-14.
  31. Wang L, Ma R, Du G, Guo H, Huang Y. Biocompatibility of helicoidalmultilamellar arginine–glycine–aspartic acid-functionalized silk biomaterials in a rabbit corneal model. J Biomed Mater Res B Appl Biomater. 2015;103(1):204- 11.
  32. Tonsomboon K, Oyen ML. Composite electrospun gelatin fiber-alginate gel scaffolds for mechanically robust tissue engineered cornea. J Mech Behav Biomed Mater. 2013;21:185-94.
  33. Madathil BK, Kumar PR, Kumary TV. N-Isopropylacrylamide-co-glycidylmethacrylate as a thermoresponsive substrate for corneal endothelial cell sheet engineering. Bio Med Research International. 2014;2014:450672.
  34. Mushkova IA, Borzenok SA, Karimova AN, Shkandina YuV. Gistomorfologicheskie izmeneniya rogovitsy krolika posle implantatsii vnutrirogovichnykh linz i elektronno-mikroskopicheskoe obosnovanie poluchennykh rezul’tatov [Histomorphological changes in the cornea of a rabbit after implantation of intracorneal lenses and electron-microscopic substantiation of the results]. Vestnik Orenburgskogo gosudarstvennogo universiteta. 2015;12:151-5.
  35. Malyugin BE, Borzenok SA, Mushkova IA, Sevlyagina NV, Shkandina YuV, Ostrovskiy DS, i dr. Morfologicheskoe issledovanie biosovmestimosti intrakorneal’nykh polimernykh linz s rogovitsey cheloveka v eksperimente in vitro [Morphological study of the biocompatibility of intracorneal polymer lenses with the human cornea in an in vitro experiment]. Oftal’mokhirurgiya. 2016;4:51-60.
  36. Mojzis P, Studeny P, Werner L. Opacification of a hydrophilic acrylic intraocular lens with a hydrophobic surface after air injection in Descemet-stripping automated endothelial keratoplasty in a patient with Fuchs dystrophy. Cataract Refractive Surgery. 2016:42(3):485-8.
  37. Marino G, Rosso F, Ferdinando P, Grimaldi A, De Biasio G., Cafiero G, et al. Growth and endothelial differentiation of adipose stem cells on polycaprolactone. Journal of Biomedical Materials Research Part A. 2012;100(3):543-8.
  38. Pellegrini G, Rama P, Mavilio F, De Luca M, Pathol J. Epithelial stem cells in corneal regeneration and epidermal gene therapy. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland. 2009;217(2):217-28.
  39. Rama P, Matuska S, Paganoni G, Spinelli A, De Luca M, Pellegrini G. Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med. 2010;363(2):147-55.
  40. Edwards JV, Buschle-Diller G, Goheen SC. Modified fibers with medical and specialty applications. Dordrecht, The Netherlands: Springer; 2010. 248 p.

Authors' information:


Filippova Ekaterina Olegovna
Candidate of Technical Sciences, Engineer, Laboratory of Plasma Hybrid Systems of the Nuclear Technology Engineering School, National Research Tomsk Polytechnic University; Assistant of the Department of Ophthalmology, and the Department of Histology, Cytology and Embryology, Siberian State Medical University
ORCID ID: 0000-0003-0425-1213

Chernyakov Aleksandr Sergeevich
3rd year Student, Department of Histology, Cytology, and Embryology, Siberian State Medical University

Ivanova Nina Mikhaylovna
Postgraduate Student, Laboratory of Plasma Hybrid Systems of the Nuclear Technology Engineering School, National Research Tomsk Polytechnic University

Information about support in the form of grants, equipment, medications

The research was carried out with the financial support of the Ministry of Education and Science of Russian Federation within the framework of the Federal Task Program (contract № 14.575.21.0140, ID RFMEFI57517X0140).

Conflicts of interest: No conflict

Address for correspondence:


Filippova Ekaterina Olegovna
Candidate of Technical Sciences, Engineer, Laboratory of Plasma Hybrid Systems of the Nuclear Technology Engineering School, National Research Tomsk Polytechnic University; Assistant of the Department of Ophthalmology, and the Department of Histology, Cytology and Embryology, Siberian State Medical University

634050, Russian Federation, Tomsk, Lenin Ave., 30

Tel.: +7 (3822) 606333

E-mail: E-mail: katerinabosix@mail.ru