

doi: 10.25005/2074-0581-2018-20-2-3-261-265

РОЛЬ БИОХИМИЧЕСКИХ АНАЛИЗОВ КРОВИ В ВЕРИФИКАЦИИ АКТИВНОСТИ ТУБЕРКУЛЁЗА ЛЁГКИХ

X.Р. НАСЫРДЖАНОВА 1 , А.М. САБУРОВА 1 , У.Ю. СИРОДЖИДИНОВА 2 , М.С. МАХСУДОВА 1

Цель: изучение взаимосвязи воспалительного процесса эндотелия сосудов с биохимическими изменениями для верификации диагноза туберкулёза лёгких (ТБЛ).

Материал и методы: приведены результаты исследования 56 больных ТБЛ в возрасте от 18-50 лет, из них 26 – с лекарственно устойчивой (ЛУ) формой ТБЛ и 30 – с лекарственно чувствительной (ЛЧ) формой ТБЛ. О состоянии эндотелия сосудов судили по количеству СРБ, фибриногена и фактору Виллебранда.

Результаты: исследования показали значительное увеличение у больных ЛУ ТБЛ содержание СРБ (4,22±0,13), фибриногена (4,21±0,21) и фактора Вилебранда (114,0±2,5). Полученные данные свидетельствуют о том, что течение специфического процесса у больных ТБЛ с обширной ЛУ является более тяжёлым, чем у больных с ЛЧ ТБЛ. Течение ЛУ ТБЛ сопровождается развитием синдрома системного воспалительного ответа, выраженность которого взаимосвязано с тяжестью состояния больного. Синдром системного воспалительного ответа проявляется повышением в сыворотке крови С-реактивного белка, фибриногена и фактора Виллебранда. Значения СРБ в пределах 4-5 мг/л являются ранним индикатором активности процесса.

Заключение: в качестве диагностического теста при ТБЛ можно использовать определение состояния эндотелия кровеносных сосудов, критериями для которого являются повышенные уровни СРБ, фибриногена и фактора Вилебранда.

Ключевые слова: туберкулёз, биохимическое исследование, состояние эндотелия, С-реактивный белок, фибриноген, фактор Виллебранда.

Для цитирования: Насырджанова ХР, Сабурова АМ, Сироджидинова УЮ, Махсудова МС. Роль биохимических анализов крови в верификации активности туберкулёза лёгких. *Вестник Авиценны*. 2018;20(2-3):261-265. Available from: http://dx.doi.org/10.25005/2074-0581-2018-20-2-3-261-265.

THE ROLE OF BIOCHEMICAL BLOOD ANALYSIS IN ACTIVITY VERIFICATION OF PULMONARY TUBERCULOSIS

KH.R. NASYRDZHANOVA¹, A.M. SABUROVA¹, U.YU. SIRODJIDINOVA², M.S. MAKHSUDOVA¹

Objective: To study the interconnection of inflammatory process of vessels endothelium with biochemical changes in verification of the pulmonary tuberculosis (PTB) diagnosis.

Methods: Results of a study of 56 PTB patients are given in the age of 18-50 years, 26 of them with a drug-resistant (DR) form of PTB and 30 with a drug-sensitive (DS) form of PTB. The status of the vessels endothelium was judged by the amount of C-reactive protein (CRP), fibrinogen, and Willebrand factor.

Results: The studies have shown a significant increase in the content of CRP (4.22±0.13), fibrinogen (4.21±0.21) and Willebrand factor (114.0±2.5) in patients with DR PTB. The received data indicate that the course of a specific process of patients of PTB with extensive DR is more severe than in patients with DS PTB. The DR PTB is accompanied by the development of the syndrome of a systemic inflammatory response, whose manifestation is interrelated with the severity of the patient's condition. The syndrome of a systemic inflammatory response is manifested by an increase in the blood serum of the C-reactive protein, fibrinogen, and Willebrand factor. The values of CRP within 4-5 mg/l are an early indicator of the process activity.

Conclusions: As a diagnostic test for PTB can be used to determine the status of endothelium blood vessels criteria for which are elevated levels of CRP, fibrinogen, and Willebrand factor.

Keywords: Tuberculosis, biochemical study, endothelium condition, C-reactive protein, fibrinogen, Willebrand factor.

For citation: Nasyrdzhanova KhR, Saburova AM, Sirodjidinova UYu, Makhsudova MS. Rol' biokhimicheskikh analizov v verifikatsii aktivnosti tuberkulyoza lyogkikh [The role of biochemical blood analysis in activity verification of pulmonary tuberculosis]. *Vestnik Avitsenny [Avicenna Bulletin]*. 2018;20(2-3):261-265. Available from: http://dx.doi.org/10.25005/2074-0581-2018-20-2-3-261-265.

ВВЕДЕНИЕ

Туберкулёз как в XX, так и в XXI веке остаётся важной проблемой во всём мире. Это заболевание, которое, возможно, забирает больше жизней, чем любая другая болезнь во всей человеческой истории, продолжает вызывать огромные страдания и проблемы во всем мире. Туберкулёз занимает второе место среди причин смерти от возбудителей инфекций [1]. Таджикистан входит в число 18 стран Европейского региона ВОЗ приоритетных по туберкулёзу. В стране, как и в других Центрально-Азиатских государствах, эпидемиологическая ситуация по туберкулёзу остаётся напряжённой. Об этом свидетельствует выявление тяжёлых распространённых форм туберкулёза среди впервые выявленных больных, высокий процент мультирезистентного туберкулёза как среди впервые выявленных больных (13,5%-20%), так и ранее леченных (53%-43%), а

 $^{^{1}}$ Кафедра биохимии Таджикского государственного медицинского университета им. Абуали ибни Сино, Душанбе, Республика Таджикистан

 $^{^2}$ Кафедра фтизиопульмонологии Таджикского государственного медицинского университета им. Абуали ибни Сино, Душанбе, Республика Таджикистан

 $^{{\}small 1}\ {\small Department\ of\ Biochemistry,\ Avicenna\ Tajik\ State\ Medical\ University,\ Dushanbe,\ Republic\ of\ Tajikistan}$

² Department of Phthisiopulmonology, Avicenna Tajik State Medical University, Dushanbe, Republic of Tajikistan

также выявление запущенных случаев туберкулёза среди детей и взрослых [2, 3].

В настоящее время диагностика бациллярных форм туберкулёза несложна, так как применяются быстрые методы выявления микобактерии туберкулёза с одновременным определением устойчивости микобактерий к рифампицину (применение аппаратов XpertMTB/RIF). Отмечаются трудности диагностики туберкулёза у больных лёгочными формами без бактериовыделения, в том числе клинически установленной лекарственно устойчивой формой туберкулёза (ЛУ ТБ) и у больных с внелёгочными формами туберкулёза, так как и первый, и второй не имеет специфических клинических симптомов. Болезнь обычно протекает под маской нетуберкулёзных заболеваний, и больные проходят длительное безрезультативное лечение у различных специалистов [4, 5]. В итоге заболевание принимает распространённое хроническое течение. В связи с этим, очень важно для верификации диагноза знание лабораторных изменений, которые происходят при активном туберкулёзе.

Из многих биохимических тестов, широко используемых в настоящее время в диагностике туберкулёза, определённое значение имеет изучение белковых фракций крови. При свежих, особенно остро протекающих формах болезни, а также при обострении и прогрессировании хронического процесса наблюдается диспротеинемия, а иногда и гипопротеинемия, т.е. наступают количественные и качественные изменения в составе белков. В таких случаях нарастает СОЭ, изменяются коагуляционные пробы, С-реактивный белок, повышается уровень фибриногена, нарушается количественное соотношение белковых фракций. Эти сдвиги характеризуются уменьшением содержания альбуминов и повышением уровня глобулинов и гликопротеидов [6].

У больных с ЛУ ТБ наличие специфической интоксикации сопровождается развитием белково-энергетической недостаточности, диспротеинемией, снижением альбуминов и транстиретина с одновременным усилением катаболических процессов, снижением плазменного уровня оксида азота и гиперкоагуляционным сдвигом в плазменной системе гемостаза [7-10].

Биохимические нарушения при развитии воспаления любого генеза по своей природе являются неспецифичными. Воспаление сопровождается усилением процессов свободно-радикального окисления, характеризующегося повреждением клеточных мембран, образованием биологически активных веществ со свойствами медиаторов воспаления (гистамин, серотонин, кинины, простагландины, лейкотриены [11, 12]. Освобождение большого количества бактериальных, лейкоцитарных и макрофагальных протеолитических ферментов обуславливает деструктивные изменения в очаге туберкулёзного воспаления [13]. От повреждающего влияния этих факторов организм защищается повышенным образованием системы белков, которые подавляют освобождение биологически активных соединений или блокируют их. Эти белки преимущественно синтезируются в печени и получили название «белков острой фазы». К ним относятся С-реактивный белок (СРБ), фибриноген и др.

Повышенный уровень СРБ приводит к продукции медиаторов воспаления (цитокинов), налипанию нейтрофилов на сосудистую стенку, активации эндотелия с выделением факторов, вызывающих спазм, способствующих образованию микротромбов и нарушению кровообращения в микроциркуляторном русле, то есть, формированию атеросклероза артериальных сосудов [14]. В последние годы количественное определение СРБ привлека-

ет к себе пристальное внимание при разной патологии. Связано это с тем, что стимуляция синтеза СРБ относится к самым ранним реакциям в формировании системного воспалительного ответа, индуцируется провоспалительными цитокинами и создает условия активации фагоцитоза различных патогенов.

Wilson D. [2011] считает, что СРБ может играть существенную вспомогательную роль при первичной постановке диагноза лёгочного туберкулёза у больных с клиническими симптомами, подозрительными на данное заболевание, и отрицательным мазком мокроты.

Установлено, что синдром системного воспалительного ответа у больных с ЛУ ТБ проявляется нарастанием концентрации белков острой фазы, снижением уровня оксида азота, повышением самого чувствительного реактанта острой фазы — сывороточного амилоидного белка — у 98% больных [15].

При развитии туберкулёзного процесса ранней реакцией эндотелия является интенсификация синтеза эндотелина-1, который стимулирует и поддерживает на физиологическом уровне образование окиси азота (NO), подверженное угнетающему воздействию специфической интоксикации. Одновременно снижается эндотелиальный синтез фактора Виллебранда, как реакция эндогенной компенсации при возникновении гиперкоагуляционного стресса и системного воспаления [16].

ЦЕЛЬ ИССЛЕДОВАНИЯ

Изучение взаимосвязи между воспалительным процессом туберкулёза лёгких и изменениями сосудистой стенки.

Материал и методы

Обследованы 56 больных в возрасте 18-50 лет с туберкулёзом лёгких, находившихся на лечении в Национальном центре туберкулёза РТ. Мужчин было 31(58,3%), женщин — 25 (41,7%). Больные были разделены на 2 группы: с лекарственно устойчивой формой туберкулёза (ЛУ ТБ) — 26 и лекарственно чувствительной формой туберкулёза (ЛЧ ТБ) — 30 человек. О состоянии эндотелия кровеносных сосудов судили по количеству С-реактивного белка, фибриногена и фактора Виллебранда.

Статистический анализ проводили методами вариационной статистики на ПК с использованием прикладного пакета Statistica 6.0 (Statsoft Inc., США). Вычисляли средние показатели (М) и ошибку среднего значения (±m) для абсолютных величин и относительные доли (Р, %) для качественных величин. Для сравнения двух независимых групп использовали U-критерий Манна-Уитни, для множественных сравнений — ANOVA Крускала-Уоллиса. Различия между показателями считали статистически значимыми при p<0,05.

Результаты и их обсуждение

Результаты исследования (табл. 1) показали, что в сыворотке крови больных с ЛУ ТБ содержание СРБ повышается на 100% ($2,09\pm0,11-4,22\pm0,13$), а у пациентов с ЛЧ ТБ — на 62,7% ($2,09\pm0,11-3,4\pm0,25$).

Содержание фибриногена в сыворотке крови при ЛУ ТБ повышается на 60,7% ($2,62\pm0,08-4,21\pm0,22$), а у больных с ЛЧ ТБ – соответственно на 40,4% ($2,62\pm0,08-3,68\pm0,11$).

Фактор Виллебранда в крови больных с ЛУ ТБ увеличивается на 19,0% (95,73 \pm 2,3 - 114,0 \pm 2,5), у больных же с ЛЧ ТБ он остаётся без изменения, в пределах нормы (95,73 \pm 2,3 - 93,54,0 \pm 2,9) по сравнению с контрольными данными.

Таблица 1 Показатели состояния эндотелия кровеносных сосудов у больных туберкулёзом лёгких

Показатели	Контрольная группа п=20	ЛУ ТБ п=26	ЛЧ ТБ п=30	р (ANOVA Крускала-Уоллиса)
	1	2	3	
СРБ мг/л	2,09±0,11	4,22±0,11 p ₁₋₂ <0,001	3,4±0,11 p ₁₋₃ <0,001 p ₂₋₃ <0,001	<0,001
Фибриноген г/л	2,62±0,08	4,21±0,22 p ₁₋₂ <0,001	3,68±0,11 p ₁₋₃ <0,001 p ₂₋₃ <0,01	<0,001
Фактор Виллебранда %	95,73±2,3	114,0±2,5 p ₁₋₂ <0,001	93,54±2,9 p ₁₋₃ >0,05 p ₂₋₃ <0,001	<0,01

Примечание: р - статистическая значимость различия показателей между группами

Полученные данные свидетельствуют о том, что течение специфического процесса у больных с туберкулёзом лёгких с обширной лекарственной устойчивостью МБТ является более тяжёлым, чем у больных с ЛЧ ТБ.

Течение ЛУ ТБ сопровождается развитием синдрома системного воспалительного ответа, выраженность которого взаимосвязано с тяжестью состояния больного. Синдром системного воспалительного ответа проявляется повышением в сыворотке крови СРБ, фибриногена и фактора Виллебранда.

Исследователи считают, что СРБ может играть существенную вспомогательную роль при первичной постановке диагноза лёгочного туберкулёза у больных с клиническими синдромами, подозрительными на данное заболевание, и отрицательным мазком мокроты. Они полагают, что высокая отрицательная предсказательная ценность повышенного коэффициента СРБ у больных с ТБ позволяет исключить его у больных с нормальны-

ми уровнями СРБ. Повышение уровня СРБ у 80% больных туберкулёзом лёгких позволяет считать этот показатель одним из информативных при оценке активности при данной патологии [15].

Значение СРБ в пределах 4-5 мг/л является ранним индикатором активности процесса. Диапазон повышения содержания СРБ у больных туберкулёзом лёгких колеблется в пределах от 4-5 до 200 мг/л и чётко коррелирует с такими параметрами тяжести процесса, как выраженность интоксикации, наличие и массивность бактериовыделения, распространённость, наличие или отсутствие распада [4].

ЗАКЛЮЧЕНИЕ

В качестве диагностического теста при туберкулёзе лёгких можно использовать определение состояния эндотелия кровеносных сосудов, критериями которого являются СРБ, фибриноген и фактор Виллебранда.

ЛИТЕРАТУРА REFERENCES

- Васильева ИА, Белиловский ЕМ, Борисов СЕ. Глобальные отчёты Всемирной организации здравоохранения по туберкулёзу: формирование и интерпретация. Туберкулёз и болезни лёгких. 2017;95(5):5-13.
- Бобоходжаев ОИ, Сироджидинова УЮ, Джумаев РР, Раджабов ДМ. Причины развития туберкулёза лёгких в Республике Таджикистан. Здравоохранение Таджикистана. 2015;3:41-7.
- Сироджидинова УЮ, Бобоходжаев ОИ, Дустматова ЗШ, Мирзоева ФО. Анализ ситуации по туберкулёзу в Республике Таджикистан. Туберкулёз и болезни лёгких. 2015;2:39-44.
- Каминская ГО, Абдуллаев РЮ, Комиссарова ОГ. Особенности метаболической активности сосудистого эндотелия у больных туберкулёзом лёгких. Вестник РАМН. 2012;11:29-32.
- 5. Ерохин ВВ. О некоторых механизмах патогенеза туберкулёза. *Туберкулёз и болезни лёгких.* 2009;11:3-8.
- Комиссарова ОГ. Особенности течения процесса и эффективность лечения у больных лекарственно устойчивым туберкулёзом лёгких при различной интенсивности синдрома системного воспаления. Туберкулёз и болезни лёгких. 2016:9:32-8.
- Бобоходжаев ОИ, Нуралиев ММ. Гепатотоксические реакции при химиотерапии больных туберкулёзом. Известия Академии наук Республики Таджикистан. 2015;4:63-9.

- Vasilyeva IA, Belilovskiy EM, Borisov SE. Global'nye otchyoty Vsemirnoy organizatsii zdravookhraneniya po tuberkulyozu: formirovanie i interpretatsiy [Global report of the World Health Organization on tuberculosis: the formation and interpretation]. *Tuberkulyoz i bolezni lyogkikh*. 2017;95(5):5-13.
- Bobokhodjaev OI, Sirodjidinova UYu, Djumaev RR, Radjabov DM. Prichiny razvitiya tuberkulyoza lyogkikh v Respublike Tadzhikistan [Causes of development of pulmonary tuberculosis in the Republic of Tajikistan]. Zdravookhranenie Tadzhikistana. 2015;3:41-7.
- Sirodjidinova UYu, Bobokhojaev OI, Dustmatova ZSh, Mirzoeva FO. Analiz situatsii po tuberkulyozu v Respublike Tadzhikistan [Analysis of the situation of tuberculosis in the Republic of Tajikistan]. *Tuberkulyoz i bolezni lyogkikh*. 2015:2:39-44.
- Kaminskaya GO, Abdulaev RYu, Komissarova OG. Osobennosti metabolicheskoy aktivnosti sosudistogo endoteliya u bol'nykh tuberkulyozom lyogkikh [Features of metabolic activity of vascular endothelium in patients with pulmonary tuberculosis]. Vestnik RAMN. 2012;11:29-32.
- ErokhinVV. O nekotorykh mekhanizmakh patogeneza tuberkulyoza [On some mechanisms of the pathogenesis of tuberculosis]. *Tuberkulyoz i bolezni* lyogkikh. 2009:11:3-8.
- 6. Komissarova OG. Osobennosti techeniya protsessa i effektivnost' lecheniya u bol'nykh lekarstvenno ustoychivym tuberkulyozom lyogkikh pri razlichnoy intensivnosti sindroma sistemnogo vospaleniya [Peculiarities of the course of the process and the effectiveness of treatment in patients with drug resistant pulmonary tuberculosis at different intensity of the syndrome of systemic inflammation]. Tuberkulyoz i bolezni lyogkikh. 2016;9:32-8.
- Bobokhodjaev OI, Nuraliev MM. Gepatotoksicheskie reaktsii pri khimioterapii bol'nykh tuberkulyozom [Hepatotoxic reactions in chemotherapy of tuberculosis patients]. Izvestiya Akademii nauk Respubliki Tadzhikistan. 2015;4:63-9.

- Худушина ТА, Волошина ЕП. Лекарственная устойчивость микобактерий туберкулёза у впервые выявленных больных туберкулёзом лёгких. Проблемы туберкулёза и болезней лёгких. 2007;12:37-9.
- Абдуллаев РЮ, Каминская ГО, Комиссарова ОГ. Сывороточный уровень оксид азота в оценке системного воспаления у больных с лекарственно - устойчивым туберкулёзом в лёгких. Проблемы туберкулёза и болезней лёгких. 2009;5:40-3.
- Paulus P, Jennewien S. Biomarkers of endothelial dysfunction: can help us deciphering systemic inflammation and sepsis. *Biomarkers*. 2011;16(1):11-21.
- 11. Гельберг ИС, Вольф СБ, Алекс ЕН. Нарушение резистентности метаболизма при туберкулёзе и методы патогенетического воздействия в его комплексном лечении. Журнал Гродненского государственного медицинского университета. 2009;1:123-8.
- Титов ВН. Биохимические маркёры эндотелия и его роль в единении функционально разных пулов межклеточной среды и пула внутрисосудистой жидкости. Клиническая лабораторная диагностика. 2007;4:6-7.
- Нуралиев ММ, Авезова НХ. Лекарственно-индуцированные поражения печени и их диагностические маркёры. Вестник Таджикского национального университета. 2015;1:246-55.
- Каминская ГО. Участие системы гомеостаза в формировании синдрома системного воспалительного ответа у больных туберкулёзом лёгких. Туберкулёз и болезни лёгких. 2011;2:52-8.
- Wilson D, Bardi M. Performance of serum C-reactive protein as a screening test for smear-negative tuberculosis in an ambulatory high HLV prevalence population. PLoS One. 2011;6(1):15248.
- Абдуллаев РЮ, Комиссарова ОГ. Сывороточный амилоидный белок А его роль и участие в патологии органов дыхания. Туберкулёз и болезни лёгких. 2011;2:3-8..

- Khudushina TA, Voloshina EP. Lekarstvennaya ustoychivost' mikobakterii tuberkulyoza u vpervye vyyavlennikh bol'nykh tuberkulyozom lyogkikh [Drug resistance of mycobacterium tuberculosis in newly diagnosed patients with pulmonary tuberculosis]. Problemy tuberkulyoza i bolezney lyogkikh. 2007;12:37-9.
- Abdullaev RYu, Kaminskaya GO, Komissarova OG. Syvorotochnyy uroven' oksida azota v otsenke sistemnogo vospaleniya u bol'nykh s lekarstvenno ustoychivym tuberkulyozom lyogkikh [Serum level of nitric oxide in the evaluation of systemic inflammation in patients with drug-resistant tuberculosis in the lungs]. Problemy tuberkulyoza i bolezney lyogkikh. 2009;5:40-3.
- Paulus P, Jennewien S. Biomarkers of endothelial dysfunction: can help us deciphering systemic inflammation and sepsis. Biomarkers. 2011;16(1):11-21.
- Gelberg IS, Volf SB, Aleks EN. Narushenie rezistentnosti metabolizma pri tuberkulyoze i metody patogeneticheskogo vozdeystviya v ego kompleksnom lechenii [Disturbance of the resistance of metabolism in tuberculosis and methods of pathogenetic influence in its complex treatment]. Zhurnal Grodnenskogo gosudarstvennogo meditsinskogo universiteta. 2009;1:123-8.
- 12. Titov VN. Biokhimicheskie markyory endoteliya i ego rol' v edinenii funktsional'no raznykh pulov mezhkletochnoy sredy i pula vnutrisosudistoy zhidkosti [Biochemical markers of the endothelium and its role in functionally different pools of the intercellular environment and the pool of intravascular fluid]. Klinicheskaya laboratornaya diagnostika. 2007;4:6-7.
- Nuraliev MM, Avezova NH. Lekarstvenno-indutsirovannye porazheniya pecheni i ikh diagnosticheskie markyory [Drug-induced liver damage and their diagnostic markers]. Vestnik Tadzhikskogo natsional'nogo universiteta. 2015;1:246-55.
- 14. Kaminskaya GO. Uchastie sistemy gomeostaza v formirovanii sindroma sistemnogo vospaliteľnogo otveta u boľnykh tuberkulyozom lyogkikh [Participation of the homeostasis system in the formation of the systemic inflammatory response syndrome in patients with pulmonary tuberculosis]. *Tuberkulyoz i bolezni lyogkikh*. 2011;2:52-8.
- Wilson D, Bardi M. Performance of serum C-reactive protein as a screening test for smear-negative tuberculosis in an ambulatory high HLV prevalence population. PLoS One. 2011;6(1):15248.
- Abdullaev RYu, Komissarova OG. Syvorotochnyy amiloidnyy belok A ego rol' i uchastie v patologii organov dykhaniya [Serum amyloid protein A-its role and participation in the pathology of respiratory organs]. *Tuberkulyoz i bolezni* lyogkikh. 2011;2:3-8.

() СВЕДЕНИЯ ОБ АВТОРАХ

Насырджанова Хурсанд Рахимовна, ассистент кафедры биохимии Таджикского государственного медицинского университета им. Абуали ибни Сино

Сабурова Анна Мухамедовна, доктор биологических наук, профессор, профессор кафедры биохимии Таджикского государственного медицинского университета им. Абуали ибни Сино

Сироджидинова Умринисо Юсуповна, доктор медицинских наук, профессор, профессор кафедры фтизиопульмонологии Таджикского государственного медицинского университета им. Абуали ибни Сино

Махсудова Мусаллама Салиховна, ассистент кафедры биохимии Таджикского государственного медицинского университета им. Абуали ибни

Информация об источнике поддержки в виде грантов, оборудования, лекарственных препаратов

Работа выполнялась в соответствии с планом НИР кафедры биохимии ТГМУ им. Абуали ибни Сино. Финансовой поддержки со стороны компаний-производителей лекарственных препаратов и медицинского оборудования авторы не получали.

Конфликт интересов: отсутствует.

(i) AUTHOR INFORMATION

Nasyrdzhanova Khursand Rakhimovna, Assistant of the Department of Biochemistry, Avicenna Tajik State Medical University

Saburova Anna Mukhamedovna, Doctor of Biological Sciences, Full Professor, Professor of the Department of Biochemistry, Avicenna Tajik State Medical University

Sirodjidinova Umrniso Yusupovna, Doctor of Medical Sciences, Full Professor, Professor of the Department of Phthisiopulmonology, Avicenna Tajik State Medical University

Makhsudova Musallama Salikhovna, Assistant of the Department of Biochemistry, Avicenna Tajik State Medical University

АДРЕС ДЛЯ КОРРЕСПОНДЕНЦИИ:

Сабурова Анна Мухамедовна

доктор биологических наук, профессор, профессор кафедры биохимии Таджикского государственного медицинского университета им. Абуали ибни Сино

734003, Республика Таджикистан, г. Душанбе, пр. Рудаки, 139

Тел.: (+992) 917241175 E-mail: 20@tajmedun.tj

ВКЛАД АВТОРОВ

Разработка концепции и дизайна исследования: НХР, СУЮ

Сбор материала: ММС

Статистическая обработка данных: ММС Анализ полученных данных: САМ

Подготовка текста: НХР Редактирование: САМ Общая ответственность: СУЮ

28.06.2018 Поступила Принята в печать 29.08.2018

ADDRESS FOR CORRESPONDENCE:

Saburova Anna Mukhamedovna

Doctor of Biological Sciences, Full Professor, Professor of the Department of Biochemistry, Avicenna Tajik State Medical University

734003, Republic of Tajikistan, Dushanbe, Rudaki Ave., 139

Tel.: (+992) 917 241175 E-mail: 20@tajmedun.tj

> Submitted 28.06.2018 29.08.2018 Accepted