Pediatrics

doi: 10.25005/2074-0581-2017-19-4-492-496
LEVEL OF REACTIVE OXYGEN SPECIES IN CHILDREN UNDER 5 YEARS OF AGE, LIVING IN THE HIGHER RADIATION BACKGROUND AREA

Z.A. Badalova1, J.S. Dodkhoev1, Kh.R. Nasyrdzhanova2

1Department of Pediatric Diseases № 1, Avicenna Tajik State Medical University, Dushanbe, Tajikistan
2Department of Biochemistry, Avicenna Tajik State Medical University, Dushanbe, Tajikistan

Objective: To study the level of reactive oxygen species (ROS) under the influence of an increased radiation background.

Methods: The level of ROS in the blood determined in 25 newborns and in 75 children from three to five years old living in the high radiation background area. The control group also included 100 children living in areas with a natural radiation background. ROS determined by the reduction of nitrous tetrazole in blood serum. The level of ROS in blood plasma directly correlated with the colour intensity of the reduced nitrous tetrazole.

Results: The levels of ROS in children living in conditions with a normal natural background of radiation were determined, which was the norm: for newborns, 0.166±0.002 mmol/ml; in children 3 years old – 0.169±0.002 mmol/ml; in children 4 years old – 0.170±0.002 mmol/ ml; in children 5 years old – 0.167±0.002 mmol/ml. In this case, the oscillations, as can be seen from the data, were within the error range (p>0.05). At the same time, in children living in conditions of increased radiation background, there was a significant increase in the level of ROS: in newborns – 0.308±0.004 mmol/ml; in children 3 years old – 0.303±0.010 mmol/ml; in children 4 years old – 0.317±0.011 mmol/ml; in children 5 years old – 0.312±0.006 mmol/ml. In this case, as in the children of the control group, changes in the values of the ROS level as a function of age ranged within the statistical error (p>0.05) in the main group.

Conclusion: This study revealed an increased formation of ROS in the body of children under 5 years of age living in areas where the natural radiation background elevated.

Keywords: Reactive oxygen species, radiation, newborn, children.

Download file:


References
  1. Shirmanova KО, Dezhatkina SV. Vliyanie radiatsii na embrion, plod cheloveka i zhivotnykh [Influence of radiation on the embryo, human and animal fetus]. Nauchno-metodicheckiy elektronnyy zhurnal «Кontsept». 2016;17:823-7.
  2. Muravlyova LE, Molotov-Luchanskiy VB, Kluyev DA. Metabolic status of erythrocytes at patients with chronic obstructive pulmonary disease. Archiv Euromedica. 2013;1:44-6.
  3. Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 2015;30(1):11-26.
  4. Nadeem A, Siddiqui N, Alharbi NO, Alharbi MM. Airway and systemic oxidantantioxidant dysregulation in ashma: a possible scenario of oxidants spill over from lung into blood. Pulm Pharmacol Ther. 2014;29(1): 31-40.
  5. Soodaeva SК, Klimanov IА. Narushenia okislitel’nogo metabolizma pri zabolevaniyakh respiratornogo trakta i sovremennye podkhody k antioksidantnoy terapii [Metabolic disorders in diseases of the respiratory tract and modern approaches to antioxidant therapy]. Atmosfera. Pul’monologiya i allergologiya. 2009;1:34-8.
  6. Оbukhova LМ, Vedunova МV, Коntorshchikova КN. Vliyanie ozona na belki plazmy krovi [Effect of ozone on blood plasma proteins]. Revista Ozonoterapia. 2009;1(3):47-9.
  7. Lee DH, Dane MJ, van den Berg BM, Boels MG, Van Teeffelen JW, Rosendaal FR, et al. Deeper penetration of erythrocytes into the endothelial glycocalyx is associated with impaired microvascular perfusion. PLoS One. 2014;9:e96477.
  8. Oberleithner H, Wilhelmi M. Determination of erythrocyte sodium sensitivity in man. Eur J Physiol. 2013;465:1459-66. Available from: http://dx.doi. org/10.1007/s00424-013-1289-x.
  9. Bonda DJ, Wang X, Perry G, Nunomura A, Tabaton M, Zhu X, et al. Oxidative stress in Alzheimer disease: a possibility for prevention. Neuropharmacology. 2010;59(4-5):290-4. Available from: http://dx.doi.org/10.1016/j. neuropharm. 2010.04.005. PMID 20394761.
  10. Garmaza YuМ, Kozlova NМ, Artyushevskaya МV, Petrovich VA, Sapotnitskiy АV, Shishko GA, i dr. Markyory okislitel’nogo stressa v plazme pupovinnoy krovi nedonoshennykh novorozhdyonnykh [Markers of oxidative stress in the plasma of umbilical cord blood of premature newborns]. Мeditsinskiy akademicheskiy zhurnal. 2013;13(4):71-6.
  11. Burduli NМ, Gutnova SК. Pokazateli perekisnogo okisleniya lipidov i antioksidantnoy zashchity u bol’nykh khronicheskim pankreatitom pri nizkointensivnoy lazernoy terapii [Parameters of lipid peroxidation and antioxidant protection in patients with chronic pancreatitis in low-intensity laser therapy]. Voprosy kurortologii, fizioterapii i lechebnoy fizicheskoy kul’tury. 2009;1:5-6.
  12. Nagornaya NV, Chetverik NА. Окsidativnyy stress: vliyanie na organizm, меtody otsenki [Oxidative stress: effects on the human body, methods of evaluation]. Zdrov’e rebyonka. 2010;2(23):28-34.
  13. Garmash SА. Оbrazovanie aktivnykh form kisloroda pri sovmestnom deystvii nizkikh kontsentratsiy ionov uranila i ryada fizicheskikh faktorov [Formation of active forms of oxygen under the combined action of low concentrations of uranyl ions and a number of physical factors]. Fundamental’nye issledovaniya. 2012.9(4):961-4.
  14. Cieślar-Pobuda A, Saenko Y, Rzeszowska-Wolny J. PARP-1 inhibition induces a late increase in the level of reactive oxygen species in cells after ionizing radiation. Mutat. Res. 2012;732(1-2):9-15. Available from: http://dx.doi. org/10.1016/j.mrfmmm.2012.01.005.
  15. Kobashigawa S, Suzuki K, Yamashita S. Ionizing radiation accelerates Drp1-dependent mitochondrial fission, which involves delayed mitochondrial reactive oxygen species production in normal human fibroblast-like cells. Biochem Biophys Res Commun. 2011;414(4):795-800. Available from: http://dx.doi.org/10.1016/j.bbrc.2011.10.006.
  16. Smith JT, Willey NJ, Hancock JT. Low dose ionizing radiation produces too few reactive oxygen species to directly affect antioxidant concentrations in cells. Biol Lett. 2012;8(4):594-7. Available from: http://dx.doi.org/10.1098/ rsbl.2012.0150.
  17. Shcherbak VА. Vnutrivennoe lazernoe obluchenie krovi v kompleksnom lechenii bol’nykh detey [Intravenous laser irradiation of blood in the complex treatment of sick children]. Меzhdunarodnyy zhurnal prikladnykh i fundamental’nykh issledovaniy. 2017;4(3):535-8.
  18. Novikova ЕV, Кuyantseva LV, Rasulova МА, Тrunova ОV. Sovremennye tekhnologii lazernogo izlucheniya v pediatrii [Modern technologies of laser radiation in pediatrics]. Voprosy kurortologii, fizioterapii i lechebnoy fizicheskoy kul’tury. 2016;93(2):119-20.
  19. Murodov AM, Abdulmadzhitzoda A, Abdulloev FM. Farmokologicheskaya korrektsiya svobodnoradikal’nykh narusheniy i endotoksikoza u bol’nykh s ostroy strangulyatsionnoy kishechnyi neprokhodimost’yu v posleoperatsionnom periode [Pharmocological correction of free radicals disturbances and endotoxemia in patients with acute strangulated intestinal obstruction in the postoperative period]. Vestnik Avitsenny [Avicenna Bulletin]. 2012;4:62-5.
  20. Gulmuradova NT. Lechenie ostrogo pankreatita s primeneniem nizkointensivnogo lazernogo izlucheniya [Treatment of acute pancreatitis using low-lever laser irradiation]. Vestnik Avitsenny [Avicenna Bulletin]. 2011;3:30-4.

Authors' information:


Badalova Zebo Abdulkhayrovna,
Post-graduate Student of the Department of Pediatric Diseases № 1, Avicenna TSMU

Dodkhoev Jamshed Saidboboevich,
Doctor of Medical Sciences, Associated Professor, Professor of the Department of Pediatric Diseases № 1, Avicenna TSMU

Nasyrdzhanova Khursand Rakhimovna,
Senior Lecturer of the Department of Biochemistry, Avicenna TSMU

Conflicts of interest: No conflict

Address for correspondence:


Badalova Zebo Abdulkhayrovna

Post-graduate Student of the Department of Pediatric Diseases № 1, Avicenna TSMU

734003, Republic of Tajikistan, Dushanbe, Rudaki Ave., 139

Tel.: (+992) 988 532116

E-mail: z_bad@mail.ru

Materials on the topic: