Cell therapy

doi: 10.25005/2074-0581-2017-19-2-177-182
PHYSIOLOGICAL ROLE OF BONE MARROW ADULT STEM CELL CD133+

J. Irgasheva1, I. Aldybiat3, F.A. Shukurov1, M. Mirshahi2, 3

1Avicenna Tajik State Medical University, Dushanbe, Tajikistan
2Tajikistan Academy of Science, Dushanbe, Tajikistan
3Paris Sorbonne Cité University, Lariboisière Hospital, UMR Paris -7 and INSERLM U965, Paris, France

Objective: Тo analyze the in vitro comportment of the CD133+ cells and their profile for cytokines secretion.

Methods: Bone marrow samples were obtained from 5 healthy individuals. Mesenchymal stem cells CD133+ extracted by magnetic bead from human bone marrow mononuclear cells (BMMNCs). BMMNCs were isolated by density-gradient centrifugation over Ficoll-400. Isolated CD133+ cells were plated on 0.2% gelatin-coated wells in the presence of free culture medium for cytokines analysis and with rich culture medium for spherical stem cell cluster generation. The proteins detected by protein array from the three independent cell preparations were considered as bioactive proteins.

Results: Isolated CD133+ cells using magnetic bead present more than 87±6% and 8±5% CD34+ cells as assessed by flow cytometry and differentiate into adherent cells. CD133+ cells generate spheroid cell clusters in rich culture medium. Biological classification of the bioactive proteins secreted by the primo culture of CD133+/ CD34+ BMMNCs after 36h in conditioned culture medium showed the presence of several categories of cytokines. Among these, the cardiac hypertrophic factor, the pro-angiogenic factors, the pro-inflammatory factors, wound healing factors such as MMPs-TIMPs, the neurophilic factors, the morphogenetic proteins and hematopoietic growth factors can be mentioned.

Conclusion: Our results indicate that CD133+ extracted from BMMNCs secretes important bioactive proteins. The multiple properties of these cytokines undoubtedly offer many therapeutic advantages.

Keywords: CD133+ stem cells, spheroids formation, bone marrow, cytokines, growth factors.

Download file:


References
  1. Leri A, Kajstura J, Anversa P. Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Circ Res. 2011;109(8):941-61. Available from: http://dx.doi.org/10.1161/ CIRCRESAHA.111.243154. Review.
  2. Abdel-Latif A, Bolli R, Tleyjeh IM, Montori VM, Perin EC, Hornung CA, et al. Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med. 2007;167(10):989-97. Review.
  3. Hoover-Plow J, Gong Y. Challenges for heart disease stem cell therapy. Vasc Health Risk Manag. 2012;8:99-113. Available from: http://dx.doi. org/10.2147/VHRM.S25665. Epub 2012 Feb 17. Review.
  4. Segers VF, Lee RT. Stem-cell therapy for cardiac disease. Nature. 2008;451(7181):937-42. Available from: http://dx.doi.org/10.1038/nature 06800. Review.
  5. Kurbonov U, Dustov A, Barotov A, Khidirov M, Mirojov G, Rahimov Z, et al. Intracoronary infusion of autologous CD133(+) cells in myocardial infarction and tracing by Tc99m MIBI scintigraphy of the heart areas involved in cell homing. Stem Cells Int. 2013;2013:582527. Available from: http://dx.doi. org/10.1155/2013/582527.
  6. Gersh BJ, Simari RD, Behfar A, Terzic CM, Terzic A. Cardiac cell repair therapy: a clinical perspective. Mayo Clin Proc. 2009;84(10):876-92.
  7. Ranjeet Singh Mahla. Stem cells applications in regenerative medicine and disease therapeutics. Int J Cell Biol. 2016; 2016: 6940283. Available from: http://dx.doi.org/10.1155/2016/6940283.
  8. Weiss DJ. Current status of stem cells and regenerative medicine in lung biology and diseases. Stem Cells. 2014;32(1):16-25. Available from: http:// dx.doi.org/10.1002/stem.1506.
  9. Richardson SM, Kalamegam G, Pushparaj PN, Matta C, Memic A, Khademhosseini A, et al. Mesenchymal stem cells in regenerative medicine: Focus on art icular cartilage and intervertebral disc regeneration. Methods. 2016;99:69-80. Available from: http://dx.doi.org/10.1016/j.ymeth.2015.09.015.
  10. Aicher A, Heeschen C, Sasaki K, Urbich C, Zeiher AM, Dimmeler S. Low-energy shock wave for enhancing recruitment of endothelial progenitor cells: a new modality to increase efficacy of cell therapy in chronic hind limb ischemia. Circulation. 2006;114(25):2823-30. Epub 2006 Dec 4.
  11. Martin-Rendon E, Brunskill SJ, Hyde CJ, Stanworth SJ, Mathur A, Watt SM. Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur Heart J. 2008;29(15):1807-18.
  12. Liao R, Pfister O, Jain M, Mouquet F. The bone marrow--cardiac axis of myocardial regeneration. Prog Cardiovasc Dis. 2007;50(1):18-30. Review.
  13. Thiele J, Varus E, Wickenhauser C, Kvasnicka HM, Lorenzen J, Gramley F, et al. Mixed chimerism of cardiomyocytes and vessels after allogeneic bone marrow and stem-cell transplantation in comparison with cardiac allografts. Transplantation. 2004;77(12):1902-5.
  14. Agbulut O, Vandervelde S, Al Attar N, Larghero J, Ghostine S, Léobon B, et al. Comparison of human skeletal myoblasts and bone marrow-derived CD133+ progenitors for the repair of infarcted myocardium. J Am Coll Cardiol. 2004;44(2):458-63.
  15. Taylor DA, Atkins BZ, Hungspreugs P, Jones TR, Reedy MC, Hutcheson KA, et al. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med. 1998;4(8):929-33. Erratum in: Nat Med 1998 Oct;4(10):1200.
  16. Tondreau T, Meuleman N, Delforge A, Dejeneffe M, Leroy R, Massy M, et al. Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity. Stem Cells. 2005;23(8):1105-12. Epub 2005 Jun 13.
  17. Jougasaki M. Cardiotrophin-1 in cardiovascular regulation. Adv Clin Chem. 2010;52:41-76. Review.
  18. Lohela M, Bry M, Tammela T, Alitalo K. VEGFs and receptors involved inangiogenesis versus lymphangiogenesis. Curr Opin Cell Biol. 2009;21(2):154- 65. Available from: http://dx.doi.org/10.1016/j.ceb.2008.12.012. Epub 2009 Feb 21.Review.
  19. Wilson KJ, Mill C, Lambert S, Buchman J, Wilson TR, Hernandez-Gordillo V, et al. EGFR ligands exhibit functional differences in models of paracrine and autocrine signaling. Growth Factors. 2012;30(2):107-16. Available from: http://dx.doi.org/10.3109/08977194.2011.649918. Epub 2012 Jan 20. Review
  20. Park H, Poo MM. Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci. 2012;14(1):7-23. Available from: http://dx.doi. org/10.1038/nrn3379.
  21. van Wijk B, Moorman AF, van den Hoff MJ. Role of bone morphogenetic proteins in cardiac differentiation. Cardiovasc Res. 2007;74(2):244-55. Epub 2006 Nov 21. Review.
  22. Wan M, Cao X. BMP signaling in skeletal development. Biochem Biophys Res Commun. 2005;328(3):651-7. Review.
  23. Sun Y, Fei T, Yang T, Zhang F, Chen YG, Li H, Xu Z. The suppression of CRMP2 expression by bone morphogenetic protein (BMP)-SMAD gradient signaling controls multiple stages of neuronal development. J Biol Chem. 2010;285(50):39039-50. Available from: http://dx.doi.org/10.1074/jbc. M110.168351. Epub 2010 Oct 6.
  24. Yang YC, Ciarletta AB, Temple PA, Chung MP, Kovacic S, Witek-Giannotti JS, et al. Human IL-3 (multi-CSF): identification by expression cloning of a novel hematopoietic growth factor related to murine IL-3. Cell. 1986;47(1):3-10.

Author information:


Irgasheva Jamila,
Doctorant at the Department of Normal Physiology, Avicenna TSMU

Aldybiat Iman,
PhD, Post Doctorant in Paris Sorbonne Cité University, Lariboisière Hospital, UMR Paris-7 and INSERLM U965, Paris, France

Shukurov Firuz Abdufattoevich,
Doctor of Medical Sciences, Full Professor, Professor of the Department of Normal Physiology, Avicenna TSMU

Mirshahi Massoud,
Professor, MD, PhD, Paris Sorbonne Cité University, Lariboisière Hospital, UMR Paris -7 and INSERLM U965, Member of Tajikistan Academy of Science

Conflicts of interest: No conflict

Address for correspondence:


Mirshahi Massoud

Professor, MD, PhD, Paris Sorbonne Cité University, Lariboisière Hospital, UMR Paris -7 and INSERLM U965, Member of Tajikistan Academy of Science

75010, Paris, France

Tel.: 00 33 1 53216775

Fax: 00 33 1 53216739

E-mail: massoud.mirshahi@inserm.fr

Materials on the topic: